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Abstract

Background: Pre-hospital laryngoscopic endotracheal intubation (ETI) is potentially a life-saving procedure but is a
technique difficult to acquire. This study aimed to obtain a recommendation for the number of times ETI should be
practiced by constructing the learning curve for endotracheal intubation by paramedics, as well as to report the
change in the frequency of complications possibly associated with intubation over the training period.

Methods: Under training conditions, 32 paramedics performed a total of 1,045 ETIs in an operating room. Trainees
performed ETIs until they succeeded in 30 cases. For each patient, the number of laryngoscopic maneuvers and any
complications potentially associated with ETI were recorded. We built a generalized logistic model to construct the
learning curve for ETI and the frequency of complications.

Results: During the training on the first 30 patients the rate of ETI success at the first attempt improved from 71% to
87%, but there was little improvement during the first 13 cases. The frequency of complications decreased from 53%
to 31%. More laryngoscopic maneuvers and longer operation time increased complications.

Conclusions: It seems that 30 live experiences of performing an ETI is sufficient for obtaining a 90% ETI success rate,
but there seems to be little benefit with fewer than 13 experiences. The frequency of complications remained at a
high level even after the training. It is desirable to conduct a more detailed and rigorous evaluation of the benefit of
pre-hospital ETI by controlling for the skill level of paramedics.
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Background
In Japan, until 2004 only medical doctors were legally
allowed to perform an endotracheal intubation on
patients. In 2004, the Japanese Ministry of Health, Labour
and Welfare legalized pre-hospital endotracheal intuba-
tion (ETI) by paramedics who have successfully completed
a standardized training program, which consists of learn-
ing the theoretical aspects of ETI from a lecture and a
video, practicing on a mannequin and 30 live experiences
of intubation in an operating room.
The objective of this study was to assess the efficacy

of the training program from the following two points of
view: (i) How much does the success rate of ETI improve
over the course of the 30 live experiences? (ii) How much
does the frequency of complications possibly associated
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with ETI decrease? These questions are important for
the following reasons. First, the benefit of pre-hospital
ETI over bag-valve-mask ventilation remains controver-
sial [1-6]. For pre-hospital ETI to have any benefit, the
performer of ETI must possess a minimum acceptable
skill level. Therefore the heterogeneity in the skill levels
of paramedics across studies might be a source of con-
troversy regarding the benefit of pre-hospital ETI over
bag-valve-mask ventilation. Second, knowing the learn-
ing curve of ETI is helpful in designing training programs
because opportunities for practicing ETI are limited, espe-
cially for paramedics. Third, although the learning curve
for endotracheal intubation has been studied [7-11], how
fast complications associated with endotracheal intuba-
tion diminish seems to be an untouched subject. We also
study the factors associated with complications.

© 2013 Toda et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.
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Methods
Study population
Following institutional review board approval (Japanese
Red Cross Kitami Hospital, Kitami, Hokkaido, Japan),
a total of 32 paramedics were trained in laryngoscopic
endotracheal intubation (ETI) from January 2005 to
December 2011. None of the trainees had prior experi-
ence of live ETI. All trainees were formally trained in
the theoretical aspects of ETI through attending a stan-
dardized lecture, watching a video and then practicing
on a mannequin before participating in the study. This
training was given by one instructor (Arakawa). Healthy
surgical patients who required an endotracheal tube as
part of their anesthetic management were recruited to
the study and provided written informed consent. The
inclusion criteria were: (i) age 20 years or older, (ii) Amer-
ican Society of Anesthesiologists (ASA) physical status
class I or II and (iii) no evidence of a potentially difficult
airway. Under a standardized anesthesia technique with
muscle relaxation (5 mg/kg thiamylal sodium and 0.07 to
0.1 mg/kg vecuronium), these patients underwent ETI by
the trainees, with an attending anesthesiologist present
and providing ongoing supervision. For each patient the
trainee was given two opportunities to perform the laryn-
goscopic maneuver. If the trainee failed to complete ETI
after two attempts (an attempt is defined by a laryngo-
scopic maneuver, that is, the insertion of the laryngoscope
blade into the mouth), the attending anesthesiologist took
over. The attending anesthesiologist recorded the number
of intubation attempts (one, two or three if the attending
anesthesiologist took over) and evaluated any complica-
tions possibly associated with intubation right after the
completion of ETI as well as at the post-operative visit.
A complication was defined by one (or more) of the fol-
lowing symptoms: hoarseness, sore throat, lip laceration,
oral bleeding, gingival bleeding, lip bleeding, pharyngeal
bleeding, tongue laceration, dental damage, lip swelling or
tongue bleeding. Some symptoms may have been caused
not by the intubation but the subsequent operation, but
we decided to include as many potential complications as
possible to produce a conservative estimate. Each trainee
continued training until completed 30 successful ETIs had
been completed in total.

Evaluation of ETI
We defined the completion of ETI by a proper place-
ment of the endotracheal tube (auscultation of stomach
and both lungs and end-tidal carbon dioxide measure-
ment) after one or two laryngoscopic maneuvers. For the
purpose of statistical analysis we defined ‘success at first
attempt’ and ‘success at second attempt’ by the comple-
tion of ETI after one and two laryngoscopic maneuvers,
respectively. We distinguished these two events because
they are not statistically independent since failure in the

first attempt might be associated with problems with the
patient’s airway or the trainee might obtain useful infor-
mation (such as the anatomical structure of the patient’s
airway) during the first attempt.

Statistical analysis
We built a generalized logistic model similar to, but more
general and flexible than, that of Mulcaster et al. [9] to
construct the learning curve for successful ETI as well
as complications. More precisely, the model for the ETI
success rate is:

Pr(success|x) = Pi + Pf − Pi
1 + exp(−V (x − T))

, (1)

where x is the number of experiences (x = 1, 2, . . . , 30), Pi
and Pf are the initial and final success rates corresponding
to x → ±∞, V is the learning speed and T is the number
of experiences at which the success rate improves fastest.
We define a successful intubation as completing ETI at the
first attempt. In Model 1 only experience x is a relevant
explanatory variable because the age and sex of the patient
were found to be insignificant in a preliminary analysis.
We did not include the number of elapsed days since the
first day of training as a regressor because it has been
found to be insignificant [10]. The usual logistic model
with no initial or final skill level is a special case ofModel 1
by setting Pi = 0 and Pf = 1. We estimated the model
parameters Pi, Pf ,V and T using the maximum likelihood
and obtained the 95% confidence interval of each parame-
ter as well as the success rate by bootstrapping 1,000 times
[12].
We also applied a generalized logistic model similar

to Model 1 to analyze the probability of complications
associated with ETI. The full model is:

Pr(complication|x) = Pi + Pf − Pi
1 + exp(−β ′x) , (2)

where Pi and Pf are the initial and final complication
rates, β is the vector of coefficients and x is the vec-
tor of explanatory variables that includes a constant, the
experience, the operation time (in minutes), dummy vari-
ables for failure in the first and second intubation attempts
for each patient, the patient’s age and sex, and whether
a nasogastric tube was inserted. As before we estimated
Model 2 using the maximum likelihood and obtained the
95% confidence interval of each parameter as well as the
complication rate by bootstrapping 1,000 times. Since we
failed to reject the simple logistic model with no start-
ing skill level (Pi = 1) and no final skill level (Pf = 0)
(P = 1.00), we re-estimated the model by setting Pi = 1
and Pf = 0.
All statistical analyses were conducted using Matlab

v8.0.0 (The MathWorks, Inc., Natick, MA, USA). Esti-
mation by maximum likelihood was performed using the
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fminsearch command and the 95% confidence inter-
vals were obtained by the bootci command. We applied
the likelihood ratio test [13] for all hypothesis testing.

Results
Overall, 32 paramedics attempted 1,049 laryngoscopic
endotracheal intubations. Four cases were aborted
because of the failure in visualizing the vocal cords in
one patient, tooth mobility in another and dental damage
during the bag-valve-mask ventilation in two others. Of
the remaining 1,045 cases, for each trainee we used only
the data corresponding to the first 30 patients to avoid
introducing survival bias. Therefore the total number of
observations used in the data analysis was 32 × 30 = 960.

ETI success
To visualize the learning curve, in Figure 1 we plot the
observed ETI success frequency computed over ten inter-
vals with equal length (experience from1 to 3, 4 to 6 and so
on) as well as the estimated probability (see the Appendix
for details). Table 1 presents the parameter estimates and
confidence intervals.
According to Figure 1, the fitted probability closely

tracks the observed frequency. In particular, the fitted
probability shows no substantial improvement before 15
experiences but sharply increases between 15 and 25
experiences. The reason why the 95% confidence inter-
vals are wider in this region is because the fitted success
rate (right-hand side of Equation 1) is most sensitive to
the learning speed V in this region, hence the confidence
intervals widen because of the sampling error in V.

To test that there is initially no substantial improvement
in the ETI success rate, we assume there is no learning
effect up to some threshold for experiences and estimate
Model 1 with the threshold with highest log-likelihood.
More precisely, the newmodel is that Equation 1 holds for
x > k but Pr(success|x) = constant for x ≤ k, where k is
the threshold. The resulting threshold was 13 and the null
hypothesis ‘no substantial learning up to some threshold
of experiences’ was not rejected by the likelihood ratio test
(P = 0.44, one degree of freedom).
Overall the success rate improved from 71% to 87% after

training on 30 patients. In fact, the null hypothesis of no
learning (V = 0 inModel 1) was rejected by the likelihood
ratio test (P = 0.0019). Even with no training the success
rate was positive (Pi = 0 in Model 1 was rejected, P =
0.0016), but the success rate did not necessarily plateau at
a level below 100% (Pf = 1 in Model 1 was not rejected,
P = 0.65).
To evaluate the model fit, we divided experience into

30, 15 and 10 categories corresponding to intervals with
length 1, 2 and 3 and performed the likelihood ratio test
for goodness-of-fit (to this end, we compared the baseline
Model 1 to a multinomial distribution; see the Appendix
for more details). The result was P = 0.38, 0.42 and 0.62 in
each case, suggesting that the current generalized logistic
model fits well to the data.
Although our data involved 30 experiences or less for

each trainee, we can compute how many experiences are
necessary to achieve a prescribed success rate if we believe
that the model can be extrapolated. To this end, we used
the baseline Model 1 with final probability Pf = 1 (which
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Figure 1 Observed success frequency of endotracheal intubation and estimated probability fromModel 1. The dashed curves indicate the
95% confidence interval.
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Table 1 Estimation result of Model 1

Parameter Estimate 95% CIa

Pi 0.71 [0.46, 0.75]

Pf 0.87 [0.82, 1.0]

V 0.30 [0.040, 22]

T 19 [14, 29]

a 95% confidence interval obtained by bootstrapping 1,000 times.

was not rejected) and found the number of experiences
x that gave the prescribed success rate. The confidence
intervals were obtained by bootstrapping as before. The
result was x = 31.5 (95% CI: [27.6, 54.3]) for 90% success
rate and x = 38.6 (95% CI: [31.2, 76.9]) for 95% success
rate.
To evaluate the robustness of Model 1, we performed

a number of robustness checks. Although the learning
curve in Figure 1 is S-shaped, Gallistel et al. [14] report
that the negatively accelerated, gradually increasing learn-
ing curve is an artifact of group averaging. To deal with
the possibility that individual learning curves deviate from
the average learning curve, we estimated Model 1 by
allowing one of the parameters V, T, or both to vary
across paramedics. However, the baseline Model 1 with-
out individual fixed effects was not rejected by the like-
lihood ratio test (P = 1.00 in all three cases). Thus
the learning curve for ETI did not appear to vary across
individuals.
In Model 1 we assumed that experience x enters linearly

in the logistic function. To deal with potential nonlin-
earity, we added a quadratic term a(V (x − T))2 into the
logistic function in Equation 1, where a is a coefficient.
However, the likelihood ratio test failed to reject the base-
line Model 1, which corresponds to a = 0 (P = 0.86).
Therefore, the baseline Model 1 seemed appropriate.

Complications
Table 2 shows the prevalence of complications possi-
bly associated with ETI (some patients experienced two
or more). Except for three cases of dental damage, the
complications were minora.
Figure 2 plots the observed frequency of complications

as well as the estimated probability. Table 3 presents the
parameter estimates and confidence intervals. Overall the
complication rate decreased from 53% to 31% after train-
ing on 30 patients. A patient’s age and sex and whether
a nasogastric tube was inserted were jointly insignificant
(P = 0.21). More experience decreased the complications
(P = 0.0055) and longer operation time and one or two
failures in intubation attemps increased the complications
(P = 0.016, 0.0060, respectively), but there was no dif-
ference in complications between one and two failures
(P = 0.75). This was probably because if the trainee failed

twice, the attending anesthesiologist took over, whose
laryngoscopic maneuver is minimally invasive.

Discussion
Considering the limited opportunities for paramedics to
practice ETI, the learning curve in Figure 1 suggests
that requiring 30 live experiences seems to be reason-
able since after 30 live experiences the success rate was
87% (95% CI: 82 to 94%). However, whether paramedics
should be trained in ETI in the first place or whether
paramedics should perform pre-hospital ETI is another
issue. Although there is some evidence that endotracheal
intubation in the field by paramedics improves survival
and functional outcome in patients with head injury [1,6],
other studies report negative results [2-5]. Amore detailed
and rigorous evaluation of the benefit of pre-hospital ETI
is desirable. In that case it will be important to control
for the skill level of paramedics participating in the study,
since we found that there is no significant learning effect
up to 13 live experiences.
TheNational Standard Paramedic Curriculum in the US

recommends that paramedic students perform at least five
live endotracheal intubations [10], but the learning curve
in Figure 1 suggests that five experiences are insufficient
since we found that there is no significant learning up to
13 experiences and learning is fastest at around 19 expe-
riences. Since the simulation of ETI with a mannequin is
reported to be effective [15], trainees with limited training
opportunities (especially paramedics) should thoroughly
practice withmannequins before proceeding to live ETI to
get the most out of those opportunities.
Although complications associated with ETI are well

known [16,17], there are hardly any reports on the depen-
dence of the complication rate on the experience of the
performer. According to Figure 2 the frequency is quite
high among novices, but quickly diminishes with acquired

Table 2 The prevalence of complications possibly
associatedwith laryngoscopic endotracheal intubation

Complication Number of cases Percentage in sample

Hoarseness 307 29%

Sore throat 189 18%

Lip laceration 15 1.4%

Oral bleeding 13 1.2%

Gingival bleeding 5 0.48%

Lip bleeding 5 0.48%

Pharyngeal bleeding 4 0.38%

Tongue laceration 4 0.38%

Dental damage 3 0.29%

Lip swelling 2 0.19%

Tongue bleeding 1 0.1%
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Figure 2 Observed frequency of complications and estimated probability fromModel 2. The dashed curves indicate the 95% confidence
interval.

experience. The vast majority of complications are minor,
among which hoarseness and sore throat are the most
common. Not all of these cases were caused by intuba-
tion per se, since according to Conway et al. [18] sore
throat occurs in about 10% of all post-operative patients
(excluding those who underwent pharyngeal and laryn-
geal operations) who were not intubated. However, the
curve in Figure 2 does provide an upper bound (conser-
vative estimate) of complications caused by intubation.
Table 4 summarizes the baseline and final probabilities
(probabilities before and after training) and the threshold
number of experiences for the improvement of perfor-
mance.
The learning curve for anesthetic procedures has been

documented by a number of researchers using simple
visualization [19], the cusum method [7,8,20,21] and
logistic regression [9-11], among others. Simple visualiza-
tion such as the observed frequency in Figures 1 and 2 is
always helpful to avoid specifying a highly inappropriate
model. Without visualization we would not have modeled

Table 3 Estimation result of Model 2

Variable Estimate 95% CIa

Experience 0.031 [0.016, 0.047]

Operation time -0.0026 [-0.004, -0.0007]

One failure -0.73 [-1.2, -0.027]

Two failures -0.86 [-1.5, -0.02]

a 95% confidence interval obtained by bootstrapping 1,000 times.

the initial and final success rate as in Model 1. How-
ever, currently there is no universally accepted method for
modeling the learning curve (see [22,23] for systematic
reviews). Statistical methods for modeling the learning
curve ideally should aim to estimate three parameters: rate
of learning, baseline (starting) skill level and final skill level
(asymptote) [23]. Our proposedModel 1, of course, passes
these criteria.
The cusum method [24], despite its wide use, is prob-

lematic for modeling the learning curve. First, the cusum
method was originally developed for quality control to
detect a process out of control. Since by design the cusum
method can only be applied to a process with a linear
trend, it might be useful for detecting the emergence of
a learning effect (or detecting a trainee who is less profi-
cient) but is not suitable for modeling the entire learning
curve where the success rate changes nonlinearly over
time. Second, explanatory variables other than time can-
not be included in the cusum method. Third, the cusum
method is unable to estimate the rate of learning, the
baseline skill level or the final skill level.
The generalized logistic model we applied to construct

the learning curve is flexible enough to fit the data well

Table 4 Summary

ETI success Complication

Baseline probability (before training) 71% 53%

Final probability (after training) 87% 31%

Threshold for improvement 13 0
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but specialized enough to be able to estimate the parame-
ter of interest. We hope that researchers interested in the
learning curve will broaden their analytical tools.

Limitations
This study has a number of limitations. First, because the
study was carried out at a single institution, the particu-
lar learning curve we obtained is strongly influenced by
the teaching quality of this particular institution. Second,
in our study we included only healthy surgical patients
with no sign of an obviously difficult airway. Thus it
is unclear whether our results will remain valid for the
whole population, although our learning curve for ETI
can be interpreted as the upper bound (optimistic esti-
mate) of the true learning curve with the general popu-
lation. Third, as the paramedics were trained only up to
30 experiences, the extrapolation of the learning curve
beyond 30 cases should be taken with caution. Finally,
and perhaps most importantly, the outcome of this study
(success/failure of intubation under muscle relaxation in
the operating room) is necessarily a short-term goal. The
long-term goal is whether paramedic intubation is benefi-
cial to actual emergency patients, but our study does not
address this question. However, our study does point out
the importance of controlling the skill level of paramedics
when evaluating the benefit of paramedic pre-hospital
intubation.

Conclusions
Any training program should be evaluated for efficacy.
We constructed the learning curve for paramedic intu-
bation and found that 30 live experiences of laryngo-
scopic endotracheal intubation seems to be sufficient for
obtaining a 90% success rate in an operating room, but
there seems to be little benefit with fewer than 13 expe-
riences. The frequency of complications remains at a
high level even after training. It is desirable to conduct
a more detailed and rigorous assessment of the benefit
of pre-hospital intubation that controls for the skill level
of paramedics.

Endnote
aAn anonymous reviewer suggested reporting the

baseline complications of the anesthesiologists that
usually perform intubation at this institution for
comparison to the paramedics. Unfortunately, no data
were available since minor complications are often left
unreported by anesthesiologists.

Appendix
Generalized logistic model
Suppose an outcome y is binary, say y = 0, 1 or ‘suc-
cess’ and ‘failure’, and we are interested in the relation
between some explanatory variables x and the probability

of the outcome, Pr(y = 1|x). A typical way to model this
situation is the linear logistic model:

Pr(y = 1|x) = 1
1 + exp(−β ′x) , (3)

where β is the vector of coefficients of the regressors. The
simple logisticModel 3may be useful most of the time, but
it has the disadvantage that the initial and final probability
of ‘success’ is necessarily 0 and 1. To see this, suppose that
the regressors include time and let time be very small or
very large. Then the right-hand side of 3 tends to 0 or 1.
For this reason, we use the more general model:

Pr(y = 1|x) = Pi + Pf − Pi
1 + exp(−β ′x) , (4)

where Pi and Pf are the initial and final probabilities of
‘success’. Model 4 includes the simple logistic Model 3 by
setting Pi = 0 and Pf = 1, which Mulcaster et al. [9] use
to model successful ETI.

Estimation
Because Model 4 is fully parametric, the most natural way
to estimate it is by maximum likelihood. Let (yn, xn)Nn=1 be
the data. Then the log-likelihood function is given by:

logL(Pi, Pf , β)=
N∑

n=1

[
yn log

(
Pi+ Pf − Pi

1 + exp(−β ′xn)

)

+(1−yn)log
(
1−Pi − Pf − Pi

1+exp(−β ′xn)

)]
.

(5)

The maximum likelihood estimator (P̂i, P̂f , β̂) can be
obtained bymaximizing the log-likelihood function 5 sub-
ject to 0 ≤ Pi, Pf ≤ 1 using optimization routines. For
instance, in this paper we use the fminsearch com-
mand in Matlab v8.0.0 (The MathWorks, Inc., Natick,
MA, USA).

Confidence intervals
Under general conditions the maximum likelihood esti-
mator is consistent and asymptotically normal. Therefore
in large samples the standard errors and confidence inter-
vals of parameters can be obtained using the asymptotic
variance. This approach has the disadvantage that the
approximation may not be good in small samples and
we need to compute higher-order derivatives of the log-
likelihood function. An alternative is to use the bootstrap
[12]. For each bootstrap repetition b = 1, 2, . . . ,B (say
B = 1, 000), we construct a bootstrap sample (ybn, xbn)Nn=1
by resampling (with replacement) from the original sam-
ple (yn, xn)Nn=1 with probability 1/N for each observation.
Then we estimate the model by maximum likelihood
using each bootstrap sample and obtain the 100(1 − α)%
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confidence interval of any parameter of interest by report-
ing the α/2 and 1 − α/2 quantiles of the bootstrap esti-
mates corresponding to b = 1, 2, . . . ,B. In this paper we
obtain the 95% confidence intervals using the bootci
command in Matlab.

Model selection and goodness-of-fit
Model 4 actually contains many models, selected by
choosing a different set of explanatory variables x or
restricting the initial and final probabilities Pi and Pf . How
should we choose from different models? If one model is
nested within another (that is, one model is a special case
of another), we can use the likelihood ratio test [13]. Sup-
pose there are two models, 1 and 2, where Model 1 is a
special case of Model 2. Let L1 and L2 be the likelihood
of each model obtained by maximum likelihood estima-
tion. Then the logarithm of the likelihood ratio statistic
2(log L2−log L1) is asymptotically chi-squared distributed
with degrees of freedom k2 − k1, where k1 and k2 are
the number of parameters in Models 1 and 2. This is the
likelihood ratio test. To compare models that are not nec-
essarily nested, we can use either the Akaike Information
Criterion [25] or the Bayesian Information Criterion [26],
but for the data used in this paper the likelihood ratio test
suffices.
To test the model fit, suppose that the value of the

explanatory variables x falls in one of J categories. Then
Model 4 is a special case of the model in which the out-
come y comes from a binomial distribution with success
rate pj, where j = 1, 2, . . . , J . Thus evaluating the model
fit reduces to the comparison between two nestedmodels,
hence we can apply the likelihood ratio test. More pre-
cisely, let Nj be the number of observations in category j,
of which there are nj ‘successes’. Then the maximum like-
lihood estimate of the binomial model is p̂j = nj/Nj, with
log-likelihood:

J∑
j=1

[
nj log p̂j + (Nj − nj) log(1 − p̂j)

]
. (6)

On the other hand, the fitted probability of ‘success’ in
category j using Model 4 is given by:

q̂j = 1
Nj

∑
xn∈j

[
P̂i + P̂f − P̂i

1 + exp(−β̂
′xn)

]
.

Then the log-likelihood of Model 4 with J categories
is given by Equation 6 with p̂j replaced by q̂j. Having
obtained two log-likelihoods, we can perform the likeli-
hood ratio test. For more information see Chapter 5 of
Hosmer and Lemeshow [27].
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