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Abstract
Background Shortages of mechanical ventilation have become a constant problem in Emergency Departments 
(EDs), thereby affecting the timely deployment of medical interventions that counteract the severe health 
complications experienced during respiratory disease seasons. It is then necessary to count on agile and robust 
methodological approaches predicting the expected demand loads to EDs while supporting the timely allocation of 
ventilators. In this paper, we propose an integration of Artificial Intelligence (AI) and Discrete-event Simulation (DES) 
to design effective interventions ensuring the high availability of ventilators for patients needing these devices.

Methods First, we applied Random Forest (RF) to estimate the mechanical ventilation probability of respiratory-
affected patients entering the emergency wards. Second, we introduced the RF predictions into a DES model 
to diagnose the response of EDs in terms of mechanical ventilator availability. Lately, we pretested two different 
interventions suggested by decision-makers to address the scarcity of this resource. A case study in a European 
hospital group was used to validate the proposed methodology.

Results The number of patients in the training cohort was 734, while the test group comprised 315. The sensitivity 
of the AI model was 93.08% (95% confidence interval, [88.46 − 96.26%]), whilst the specificity was 85.45% [77.45 
− 91.45%]. On the other hand, the positive and negative predictive values were 91.62% (86.75 − 95.13%) and 87.85% 
(80.12 − 93.36%). Also, the Receiver Operator Characteristic (ROC) curve plot was 95.00% (89.25 − 100%). Finally, 
the median waiting time for mechanical ventilation was decreased by 17.48% after implementing a new resource 
capacity strategy.

Conclusions Combining AI and DES helps healthcare decision-makers to elucidate interventions shortening the 
waiting times for mechanical ventilators in EDs during respiratory disease epidemics and pandemics.
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Background
The rising importance of mechanical ventilation 
availability in seasonal respiratory diseases
Since the onset of several respiratory viruses, including 
influenza, Respiratory Syncytial Virus (RSV), and the 
recent COVID-19, EDs everywhere have faced unpre-
ceded challenges in managing respiratory infections in 
the community, protecting their staff and patients from 
infection, and managing resources, including the devel-
opment of innovative new resources for prevention and 
treatment of these diseases, managing the associated sup-
ply chains, and ensuring efficient and equitable resource 
allocation. This problem has been particularly severe in 
countries with resource-limited health facilities [1].

The high demand, and often serious supply shortages, 
for severely respiratory-affected patients has been wide-
spread, with the insufficient mechanical ventilator supply 
causing serious problems and mortalities in many coun-
tries [2]. Such demands emanated from large numbers of 
patients requiring ventilators for sustained use [2].

Throughout the respiratory disease seasons, epidemio-
logical models have been widely used and disseminated 
to provide understanding, forecast the future spread 
of these diseases, and assess the likely impact of pos-
sible interventions. Such modeling can provide useful 
insights into forecasting resource requirements, such 
as mechanical ventilation demand. Complementary to 
these population models, simulation has emerged to 
improve understanding and support decision-making 
throughout the EDs, thus reducing the overall impact 
of respiratory viruses [3]. Simulation models allow us to 
incorporate complexities such as high heterogeneity of 
disease dynamics across patients alongside huge uncer-
tainties of disease trajectories and patient behaviors [4]. 
For instance, ventilation of patients is highly variable 
because of the heterogeneous patient lung pathology [5]. 
Such simulation models can facilitate resource planning 
[6] alongside the epidemiological population models. 
This is in response to the mechanical ventilation needs 
evident in the recent respiratory pandemic, where a fatal-
ity rate ranging between 50% and 97% was experienced in 
patients needing mechanical ventilation [7, 8].

Managing artificial ventilator availability: a review of 
efforts
Predicting the use of mechanical ventilators
Such crises have led to various models supporting ED 
surge capacity planning [9]. In this regard, we are initially 
required to predict patients with high artificial ventila-
tor probability during the next few hours. This has been 
described by Parreco et al. [10] as a complex classifica-
tion problem with related variables, known as features, 
and some AI algorithms that may be suitable for pro-
viding accurate predictions. Allied with this problem is 

the challenge of determining the probabilities of such 
invasive treatments. AI could be useful for early detec-
tion of patient deterioration, identification of new prog-
nostic features, and management improvements during 
respiratory epidemics/pandemics. Many recent papers 
have used AI when addressing seasonal respiratory dis-
eases. For example, Prodhan et al. [11] employed multiple 
regression models based on chest radiographs to predict 
the mechanical ventilation duration (> 8 days) in RSV-
infected children. Morton et al. [12] used the P/F ratio to 
predict the artificial ventilator need during the UK influ-
enza. Likewise, Parreco et al. [10] predicted prolonged 
mechanical ventilation and tracheostomy placement 
through gradient-boosted decision trees. Later, Patrício 
et al. [13] used various classifiers to predict COVID-19 
patient admission to hospital and respiratory assistance 
requirements. Overall, most studies concluded that AI 
was suitable for identifying individuals who may require 
respiratory support in the future.

From the discussion above, we can conclude that it is 
possible to provide reasonable predictions for the pro-
gression of patients to artificial ventilators within EDs. 
Here, we are mainly interested in using the RF classifier, 
which is an ensemble method that combines multiple 
decision trees, so it is flexible and addresses heterogene-
ity well [14].

Reconfiguring the ED for improved mechanical ventilation 
availability
There have been numerous studies and reviews con-
cerned with ED simulation modeling [15–17]. A key issue 
is the inclusion of patient-centered care pathways for 
long-term and complex patient management [18, 19], and 
management of scarce resources [20]. The heterogeneity 
and diversity of patient pathways are often modeled using 
multiple compartments [20]. Another common focus is 
the resource allocation within the ED and other health-
care services e.g., Ordu et al. [21], developed a novel 
healthcare resource allocation decision support tool that 
links all services and specialties within hospitals.

Moving to our current study on modeling mechanical 
ventilator availability, not surprisingly it transpires that 
several simulation models have already been developed. 
For example, Bhavani et al. [22] simulated different triage 
strategies for ventilator allocation to COVID-19 patients 
in an extreme ventilator shortage environment, facilitat-
ing a better understanding of ethical issues in such strate-
gies. Scarce resource allocation of artificial ventilators to 
suitable patients has also been explored by Mehrotra et 
al. [23], where the authors considered stochastic optimi-
zation solutions that allocate ventilators from a central 
agency.

In this paper, we use a novel strategy that couples Arti-
ficial Intelligence (AI), where RF is applied to predict 
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artificial ventilator use, with Discrete-Event Simulation 
(DES), where we model the patient pathway through 
ED, including the pretesting of strategies reducing the 
mechanical ventilation waiting time. This new approach 
facilitates the optimal resource utilization for such 
patients during respiratory disease seasons.

Methods
Study design, setting, and population
A cross-sectional scheme was implemented in the ED of 
a Spanish hospital group during the recent respiratory 
pandemic – SARS-CoV-2. The healthcare group provided 
full consent on this project through Agreement #14-12-
2021-004 (Access request ID:39). In this ED, the Emer-
gency Severity Index was employed to support the triage 
process [24] in 4,479 Covid-19-infected patients. Also, an 
internal mechanical ventilation section for patients need-
ing this device was implemented. Despite this, prolonged 
waiting times for ventilators were reported, evidenc-
ing the need for better resource management. The data 
employed in this study were collated from the “COVID 
DATA SAVE LIVES” Electronic Health Records from 
February-2020 to February-2021. Patients with incom-
plete or missing backgrounds were excluded from this 
analysis. Specifically, 1,717 patients were discarded due 
to missing data, including potential predictors and out-
comes (Fig. 1).

Features and missing data management
The dataset derived from the Electronic Health Records 
(EHRs) of the showcased hospital contained 13 char-
acteristics from the clinical (Systolic Arterial Pressure 
(SAP_R1, SAP_R2), Diastolic Arterial Pressure (DAP_R1, 
DAP_R2), Core Temperature (CT_R1, CT_R2), Oxy-
gen Saturation Level (OSL_R1, OSL_R2), Heartbeat 
(HB_R1, HB_R2), D-dimmer concentration: DDIMER) 
and sociodemographic (Sex, Age) domains. The features’ 
significance was validated through an Analysis of Vari-
ance (ANOVA) test (α = 0.05) and the Mean Decrease in 

Gini Coefficient (MDGC). Chest radiographs were not 
utilized, considering availability limitations and inter-
pretation variability. Also, respiratory rate and blood gas 
analysis features were not deemed as they were not avail-
able in the EHRs. Finally, the median values were com-
puted to impute the missing data.

Outcomes
We set a binary outcome variable for the mechanical 
ventilation use. Specifically, “1” was assigned to patients 
under assisted artificial ventilation; otherwise, “0” was 
allocated. Therefore, it is possible to estimate the prob-
ability of using this machine once the patient has been 
admitted to the ED. Thereby, ED managers can anticipate 
designing interventions to ensure high mechanical venti-
lation availability.

Data processing and model formulation
As there is no independent cohort, we have split the 
dataset to train and assess the AI model (Fig.  1). The 
training group comprised 70% randomly chosen patients 
(n7 = 734) while the testing dataset contained 30% ran-
dom cases (n8 = 315). The training subset was employed 
to train the classifier to predict the mechanical ventila-
tion probability, whilst the testing subset was utilized to 
evaluate how well the RF model forecasts this likelihood.

RF algorithm
An RF classifier was trained and assessed to verify how 
well it could score the mechanical ventilation probabil-
ity in the ED. The model hyperparameters were tuned by 
implementing cross-validation. The number of trees var-
ied between 100 and 500 while the number of variables 
tried in each split was 3. The Rstudio® (v. 2023.09.1 + 494) 
and R® (v. 4.3.2) were employed to operationalize this 
algorithm.

Fig. 1 Flowchart representing the pathway from the initial patient dataset to the derivation of training and test cohorts
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DES for mechanical ventilation capacity management
A DES model was designed to mimic the current ED 
from admission to artificial ventilation provision. We first 
diagrammed the multi-phase process in the ED using a 
flowchart. The process variable data were then gathered, 
cleaned, and analyzed regarding randomness, homogene-
ity, and goodness-of-fit. The DES model was later con-
structed in Arena® (v. 16.10.00) to animate the patient 
routes within the ED, thereby easing commitment with 
the stakeholders and supporting model verification. A 
1-sample sign test (α = 0.05) was employed to validate 
whether the real-world ED was statistically comparable 
with its virtual version concerning mechanical ventila-
tion waiting time. The RF predictions were inserted into 
the simulated system to appraise whether the artificial 
ventilator availability is sufficient to address the incom-
ing demand. Finally, various improvement scenarios are 
designed and pre-tested in the simulation model. Man-
Whitney tests (α = 0.05) are performed to validate if the 
median waiting time for artificial ventilation will be fur-
ther reduced if implementing the proposed intervention.

Results
A total of 1,049 respiratory-affected patients were con-
sidered in this analysis. Table 1 elucidates the character-
istics of patients who required/did not require ventilation 
support. For example, most patients who required ven-
tilation support were male (n = 292; 0.73); while a large 
proportion of the ventilated patients were over 60 years 
(n = 288; 0.72). Regarding clinical variables, the median 
OSL was lower in ventilated patients (OSL_1 = 92%; 
OLS_2 = 92%) than in those who did not necessitate this 
treatment (OSL_1 = 95%; OSL_2 = 95%). Furthermore, 

the median number of heartbeats was more significant 
in mechanically ventilated people (HB_1 = 91; HB_2 = 91 
Vs. HB_1 = 88; HB_2 = 88). Moreover, it is worth not-
ing the substantial difference between the medians of 
D-Dimmer levels detected in patients interacting with 
this device (D-DIMER = 1334 ng/ml) and those who did 
not (D-DIMER = 745 ng/ml).

ANOVA tests (α = 0.05) and MDGC (Fig. 2) evidenced 
the features’ significance. Specifically, the resulting p-val-
ues (Table 1) were lower than the alpha level (0.05), and 
the associated factors were therefore categorized as sig-
nificant for predicting the mechanical ventilation prob-
ability. The choice of the features was also underpinned 
by the MDGC, whose value ranged from 3.22 to 106.76, 
thereby indicating the high importance of these variables 
in the RF model. It is good to note the extreme impor-
tance of D-DIMMER (MDGC = 106.76) in predicting the 
outcome variable.

Most performance metrics are above 90%, indicating 
that the RF model can perform well. For example, the 
sensitivity (93.08 − 95% CI [88.46 − 96.26%]) indicates the 
true positive rate, i.e., it will correctly predict between 
88.46% and 96.26% of the patients requiring ventilation 
assistance. Meanwhile, the specificity (85.45 − 95% CI 
[77.45 − 91.45%]) shows the false negative rate, indicating 
that it will correctly predict 77.45% and 91.45% of cases 
in which ventilators will not be necessary. Finally, the 
Receiver Operator Characteristic (ROC) curve (Fig.  3) 
(95% − 95% CI [89.25 − 100%]) indicates excellent dis-
crimination between patients needing and not needing 
ventilation support. It is good to highlight that McNe-
mar’s test p-value (0.2012) was higher than the error 
level (0.05), thereby discarding heterogeneity problems 

Table 1 Characteristics of patients who required/did not require ventilation support
Feature Levels Patients who required ventila-

tion support
Patients who did not require 
ventilation support

P-
value

Sex Male 292 (0.73) 373 (0.57) < 0.01
Female 106 (0.27) 278 (0.43)

Age 30 years old or younger 14 (0.04) 17 (0.03) < 0.05
30–60 years old 96 (0.24) 200 (0.31)
Older than 60 288 (0.72) 434 (0.66)

Systolic Arterial Pressure (mm Hg) Record 1 (SAP_1) 130.00 (234.85) 133.00 (353.26) < 0.005
Record 2 (SAP_2) 131.00 (270.57) 133.00 (358.14)

Diastolic Arterial Pressure (mm 
Hg)

Record 1 (DAP_1) 76.00 (90.252) 76.00 (886.70) < 0.01
Record 2 (DAP_2) 76.00 (116.087) 77.00 (705.28)

Core Temperature (°C) Record 1 (CT_1) 36.7 (0.527) 36.5 (0.466) < 0.005
Record 2 (CT_2) 36.7 (0.571) 36.5 (4.698)

Oxygen Saturation Level (%) Record 1 (OSL_1) 92.00 (73.664) 95.00 (29.791) < 0.005
Record 2 (OSL_2) 92.00 (92.224) 95.00 (29.413)

Heartbeat
(# of heartbeats)

Record 1 (HB_1) 91.00 (205.155) 88.00 (211.362) < 0.01
Record 2 (HB_2) 91.00 (235.223) 88.00 (214.949)

D-dimmer concentration (ng/ml) -------- 1334 (54,071,055) 745 (13,318,254) < 0.001
*Note: In categorical variables: Frequency (Proportion) // In quantitative variables: Median (Variance)
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between the proportion of miscategorized patients pre-
sented in both classes.

The RF predictions were then included in the DES 
model that represents the current ED service during the 
seasonal respiratory disease (Fig.  4). Although it would 
have been more useful to implement the AI model ear-
lier at the triage stage, the variables collected in this unit 
(in the case of the showcased hospital) did not have suf-
ficient predictive power, and it was, therefore, necessary 
to add other variables gathered in upstream steps of the 
emergency care. In other words, employing an AI model 
only based on triage-related indicators would have led to 
more significant errors in the identification of patients 
with need of ventilation and capability management 
decisions.

The flowchart shown in Fig. 4 evidences the multiphase 
nature of the emergency care. In this service, four main 
process variables were acknowledged: Time Between 

Admissions (TBA), Triage Time (TT), ED Length of Stay 
(ED-LoS), and Mechanical Ventilation Duration (MVD). 
The mean TBA was 19.06 min (SD: 29.52), while the aver-
age TT was 12.5 min. On the other hand, the mean ED-
LoS was 52.5  min for I-II triage categories while it was 
42.5 min for III-V. The average MVD was found to be 10.1 
days. Likewise, the input data analysis concluded that all 
variables are random (p > 0.05). In the case of TBA, dif-
ferent patterns were observed considering the weekday 
and Time Slot (TS) (TS1: 00:00–08:00; TS2: 08:00–16:00; 
TS3: 16:00–00:00; p = 0) while two groups of patients 
were evident from the triage process (p < 0.05) (I-II; III-
V). Chi-squared tests were finally executed to derive each 
indicator’s probability expression (Table 2).

Figure 5 depicts an ED simulation model compartment 
designed using Arena®. The iteration length was 15 days 
(24 h/day), whilst the warm-up period and blocking like-
lihood were 2400  h and 0, respectively. In this case, 29 

Fig. 2 Mean Decrease of Gini Coefficient for candidate predictors
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iterations were necessary to fully represent the real-world 
variation of the ED when facing this respiratory viral ill-
ness. A 1-sample sign test (α = 0.05) (Ho: η = 116 min|| Ha: 
η ≠ 116  min; p-value = 1) demonstrated that the virtual 

model is comparable with the real-world ED and can be 
therefore utilized for operability analysis and pre-test-
ing of interventions aiming at shortening the Mechani-
cal Ventilation Waiting Time (MVWT). Currently, the 

Fig. 4 Proposed ED procedure for predicting mechanical ventilation needs based on AI

 

Fig. 3 ROC curve for the prediction of mechanical intervention probability in the test subset
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MVWT ranges from 111.001 to 119.002  min, with a 
median of 115.68 min. Being aware of this situation, the 
ED manager and the supervision board proposed two 
potential improvement strategies: (i) Increase the number 
of ventilators by 100%, and (ii) Transfer patients to a part-
ner hospital offering idle mechanical ventilation capac-
ity (15 ventilators). We undertook a Mann-Whitney test 
to determine if the proposed interventions would trig-
ger a substantial MVWT reduction (Fig.  6). In the case 

of application, Strategy (i) would decrease this indicator 
between 2.22 and 13.23  min (95% CI; p-value = 0.009; 
W = 930; Improvement percentage = -6.22%) while Strat-
egy (ii) would cause a reduction fluctuating between 
11.35 and 20.59  min (95% CI; p-value = 0; W = 3,037; 
Improvement percentage = -17.48%).

Discussion
Integrating AI and DES in our study offers significant 
advancements in clinical decision support to emergency 
care, particularly in mechanical ventilation management 
during respiratory outbreaks such as the recent COVID-
19. This study leverages a novel approach, combining 
the predictive power of AI with the comprehensive DES 
process modeling, focusing on improving the mechanical 
ventilation availability in EDs. The use of RF to estimate 
the mechanical ventilation probability of respiratory-
affected patients at the entry point of emergency wards is 
a critical component of our approach. The RF predictive 
accuracy in identifying patients who require mechanical 
ventilation offers several advantages:

  • Enhanced Triage Accuracy: By accurately predicting 
the mechanical ventilation likelihood, EDs can 
prioritize patients more effectively, ensuring those in 
need of urgent care receive the earliest attention.

  • Reduction in Medical Errors: The AI-driven 
predictions reduce the risk of human error in the 
triage process, leading to better patient outcomes 
and reduced mortality rates.

  • Resource Optimization: The ability to forecast 
patients in critical respiratory conditions aids in 
optimal resource allocation, particularly in managing 
the mechanical ventilator demand.

Our methodology underscores the interaction between 
Discrete-Event Analysis and emergency care. By feed-
ing the RF predictions into the DES framework, we can 
simulate and evaluate the ED response regarding ven-
tilator availability. This interaction provides valuable 
insights:

  • Scenario Analysis and Planning: The DES model 
allows for testing various scenarios, helping hospitals 
prepare for different ventilator demand levels.

  • Strategic Intervention Development: The simulation 
assists in identifying the most effective interventions 
to alleviate ventilator scarcity, ensuring high 
availability for critical patients.

Particularly, the DES application offers a detailed under-
standing of the patient’s journey through the ED. Key 
benefits include:

Table 2 Probability expressions of process variables in the DES 
model
Variable Pipeline Probability expression
TBA Monday – TS1 LOGN(0.06, 0.15) days

Monday – TS2 LOGN(0.02, 0.04) days
Monday – TS3 LOGN(0.01, 0.02) days
Tuesday – TS1 LOGN(0.09, 0.21) days
Tuesday – TS2 LOGN(0.02, 0.04) days
Tuesday – TS3 LOGN(0.01, 0.02) days
Wednesday – TS1 LOGN(0.14, 0.72) days
Wednesday – TS2 LOGN(0.02, 0.05) days
Wednesday – TS3 LOGN(0.01, 0.02) days
Thursday – TS1 EXPO(0.06) days
Thursday – TS2 LOGN(0.03, 0.06) days
Thursday – TS3 LOGN(0.01, 0.02) days
Friday – TS1 WEIB(0.05, 0.69) days
Friday – TS2 LOGN(0.02, 0.05) days
Friday – TS3 LOGN(0.01, 0.02) days
Saturday – TS1 WEIB(0.04, 0.89) days
Saturday – TS2 LOGN(0.03, 0.06) days
Saturday – TS3 LOGN(0.02, 0.03) days
Sunday – TS1 LOGN(0.05, 0.18) days
Sunday – TS2 LOGN(0.03, 0.05) days
Sunday – TS3 LOGN(0.02, 0.02) days

TT --------- UNIF (10,15) min
ED-LoS I-II UNIF (42.5,62.5) min

III-V UNIF (32.5,52.5) min
MVD --------- UNIF (7.1, 13.2) days

Fig. 5 Virtual representation of patient arrival, waiting time before triage, 
and admission
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  • Process Optimization: DES helps visualize and 
analyze the ED processes, from patient admission 
to mechanical ventilation, highlighting areas for 
efficiency improvement.

  • Predictive Modeling: It enables the hospital to 
foresee and prepare for future mechanical ventilation 
demands, facilitating better management during 
high-demand scenarios.

Our findings contribute to the growing research body on 
using AI and simulation models in healthcare. Applying 
AI to predicting the mechanical ventilation requirement 
is consistent with previous studies [2, 6, 10, 11], which 
have demonstrated the potential of AI in enhancing 
healthcare delivery. However, our approach goes a step 
further by integrating these predictions into DES mod-
els, offering a more comprehensive tool for ED resource 
management.

This integrated approach aligns with the current trend 
toward digital transformation in healthcare, where data-
driven and simulation-based strategies are increasingly 
employed for resource management. Our study serves as 
a model for other healthcare settings facing similar chal-
lenges, especially in resource-constrained environments.

While our study presents a novel approach to manag-
ing ED resources during respiratory disease seasons, 
it has limitations. The accuracy of our AI model is con-
tingent on the data quality and comprehensiveness. 
The model’s predictions may be less reliable when data 
collection is inconsistent or incomplete. Additionally, 
the study’s findings are based on a specific context and 

healthcare setting, which may limit their generalizability 
to other settings with different patient demographics or 
healthcare infrastructures.

Implementing the proposed AI and DES-based frame-
work in a real-world healthcare setting involves sev-
eral practical and operational challenges. These include 
ensuring the availability of high-quality data, integrating 
the model into existing healthcare IT systems, and train-
ing healthcare staff to use and interpret the model’s out-
puts effectively. Addressing these challenges requires a 
collaborative effort involving clinicians, IT professionals, 
and healthcare administrators [25].

Definitively, integrating AI with DES in emergency 
care provides a robust framework for improving deci-
sion-making in EDs. It enhances the accuracy of triage 
processes, optimizes resource allocation, and prepares 
healthcare systems for efficient mechanical ventilator 
management, ultimately improving patient outcomes 
and healthcare efficiency during critical respiratory sea-
sons. This is important considering that a shortage of 
ventilators may represent a high risk for patient’s health 
as the ventilators replace the respiratory function during 
hypoxemic and hypercapnic respiratory failure [26]. This 
study signifies a substantial step forward in the applica-
tion of AI and simulation technologies in emergency 
care. By providing accurate predictions and simulating 
various scenarios, this approach offers a valuable tool for 
healthcare providers in making informed decisions about 
patient care and resource allocation.

Fig. 6 Comparison among the current ED configuration and strategies S1, S2
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Future developments and implementations
Recognizing the model’s importance in predicting the 
necessity for mechanical ventilation underscores its 
potential in healthcare settings. The proposed innova-
tive approach not only boosts the precision in forecasting 
ventilation needs but also ensures the strategic allocation 
of ventilators, which are vital during periods when respi-
ratory ailments exert pressure on healthcare resources.

Table 3 outlines the practical utility of the decision sup-
port tool in a clinical setting.

Future developments will enhance the model by incor-
porating a broader range of clinical parameters and 
patient data, aiming to boost predictive accuracy and 
extend its applicability across various patient demo-
graphics. Collaboration with clinical entities for real-
world testing and refinement of the model is anticipated, 
solidifying its relevance in clinical decision-making 
processes.

The model’s utility as a decision support mechanism 
is highlighted by its capability to objectively assess clini-
cal situations, reducing reliance on subjective evalua-
tions. This is particularly advantageous in high-demand 
scenarios or when the medical team’s experience varies, 
ensuring that patients most at risk of requiring mechani-
cal ventilation are identified promptly. Consequently, 
this facilitates the prioritization of patient care, efficient 
resource utilization, and improved patient outcomes.

Explorations into integrating the predictive tool within 
hospital information systems are underway. These aim 
to offer real-time support for clinical decisions. Such 
integration is expected to enhance workflow efficiency, 
enabling early identification and proactive management 
of high-risk patients.

The development and implementation of this predictive 
model are critical steps forward in improving the deliv-
ery of emergency care, especially during peak times. The 

ongoing refinement and integration into clinical work-
flows are intended to establish a robust decision support 
system, enhancing care quality and efficiency for patients 
potentially needing mechanical ventilation.

Of course, it is important to point out that enhanc-
ing the predictive algorithm for mechanical ventilation 
requires a strategic approach centered on key elements. 
First, broadening the dataset with diverse clinical param-
eters and patient demographics is crucial for improv-
ing model generalizability. Adopting advanced machine 
learning techniques like deep learning will enable the 
model to uncover complex data patterns. New real-world 
validation through collaboration with healthcare insti-
tutions ensures the algorithm’s effectiveness in practical 
settings. Implementing a continuous learning feedback 
loop will allow the model to evolve by integrating new 
patient data and outcomes. Lastly, interdisciplinary col-
laboration will ensure the model’s clinical relevance and 
seamless integration with healthcare IT systems, making 
it a robust tool for clinical decision-making.

Conclusions
The context of seasonal respiratory diseases, including the 
recent pandemic and the challenges regarding mechani-
cal ventilation management in EDs, motivate the need 
for more agile and robust methodological approaches to 
increase capacity due to the expected demand load and 
the flexibility and ease for timely mechanical ventilator 
allocation. In this study, we proposed integrating AI and 
DES to improve the mechanical ventilation availability in 
EDs during respiratory disease seasons. This approach is 
helpful for ED managers as it provides decision-making 
support for enhanced triage accuracy, reduced medi-
cal errors, scenario analysis and planning, and strategic 
intervention development.

An important aspect of caring for such critically ill 
patients, with acute respiratory failure, is the additional 
need for providing diverse human and technical assis-
tance for ancillary activities such as: patient anaesthe-
tization, tubing, and sedation, necessitating additional 
medical and nursing support. Once ventilator require-
ments are determined, further work should focus on 
determining the necessary human and other equipment 
to provide such additional resources, which may be in 
short supply. In this regard, the DES model may evaluate 
how the availability of staff and medical supplies may be 
managed to respond to mechanical ventilation demands 
during respiratory disease seasons effectively [27, 28].

Digital Twins have recently emerged as a powerful 
tool for providing a virtual representation of real-life 
systems and continuously updating with real-time data; 
simultaneously, the twin is permitted to interact with 
and improve the live systems. Such Digital Twinning is 
a powerful approach for managing hospital systems in 

Table 3 Practical utility of the decision support tool
Utility Aspect Description
Real-time 
Monitoring and 
Alerts

Continuously analyzes incoming patient data to 
identify those at high risk of requiring mechani-
cal ventilation and alerts medical staff for timely 
intervention.

Resource 
Allocation

Predicting ventilation needs is crucial during peak 
demand periods and aids in the efficient allocation 
of ventilators and ICU beds.

Training and 
Education

It serves as an educational resource for medical staff, 
especially those in training, by providing insights into 
the predictive factors for respiratory support needs.

Data-Driven 
Decisions

Facilitates a more data-driven approach to patient 
care, reducing variability in clinical judgment and po-
tentially leading to more standardized care pathways.

Integration 
with Electronic 
Health Records 
(EHRs)

Integrates with EHRs to leverage historical patient 
data for more accurate predictions and contributes 
to a comprehensive patient care record.
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resource-limited settings and then represents a natural 
extension of our current models. Another useful direc-
tion for further work is extending our approach to 
resourcing other ED areas. Likewise, it is widely advised 
to collect other variables in the triage stage, includ-
ing those associated with the respiratory rate and blood 
gas analysis, to move the model to the beginning of the 
emergency care and consequently intervene more antici-
patively in the high-risk patients and the mechanical ven-
tilation capacity. These ideas could readily be extended to 
the development of flexible and generalizable healthcare 
resource modeling, even linked to readmissions from the 
community.
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