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Abstract 

Background Traumatic shock is the leading cause of preventable death with most patients dying within the first 
six hours from arriving to the hospital. This underscores the importance of prehospital interventions, and growing 
evidence suggests prehospital transfusion improves survival. Optimizing transfusion triggers in the prehospital set‑
ting is key to improving outcomes for patients in hemorrhagic shock. Our objective was to identify factors associated 
with early in‑hospital transfusion requirements available to prehospital clinicians in the field to develop a simple 
algorithm for prehospital transfusion, particularly for patients with occult shock.

Methods We included trauma patients transported by a single critical care transport service to a level I trauma center 
between 2012 and 2019. We used logistic regression, Fast and Frugal Trees (FFTs), and Bayesian analysis to identify fac‑
tors associated with early in‑hospital blood transfusion as a potential trigger for prehospital transfusion.

Results We included 2,157 patients transported from the scene or emergency department (ED) of whom 207 
(9.60%) required blood transfusion within four hours of admission. The mean age was 47 (IQR = 28 – 62) and 1,480 
(68.6%) patients were male. From 13 clinically relevant factors for early hospital transfusions, four were incorporated 
into the FFT in following order: 1) SBP, 2) prehospital lactate concentration, 3) Shock Index, 4) AIS of chest (sensitiv‑
ity = 0.81, specificity = 0.71). The chosen thresholds were similar to conventional ones. Using conventional thresholds 
resulted in lower model sensitivity. Consistently, prehospital lactate was among most decisive factors of hospital 
transfusions identified by Bayesian analysis (OR = 2.31; 95% CI 1.55 – 3.37).

Conclusions Using an ensemble of frequentist statistics, Bayesian analysis and machine learning, we developed 
a simple, clinically relevant prehospital algorithm to help identify patients requiring transfusion within 4 h of hospital 
arrival.
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Introduction
Hemorrhagic shock is the leading cause of preventable 
death among injured patients [1]. Shock occurs in a con-
tinuum with progressive end-organ damage and leads to 
death if inadequately treated. Aggressive resuscitation 
according to damage control principles reduces the risk 
of death from hemorrhagic shock [2]. Damage control 
resuscitation with prehospital blood products lowers 
the risk of death, although the role for prehospital blood 
remains unclear [3, 4]. Early resuscitation prevents the 
consequences of hemorrhagic shock and poor outcomes 
but is difficult to achieve in the prehospital environment 
with constrained diagnostic and therapeutic capabilities. 
Current field triage guidelines use vital signs and level of 
consciousness to determine the need for expedient trans-
port to a trauma center, but these guidelines may over-
look many patients with unrecognized or compensated 
shock who may benefit from early blood administration 
[5]. Indications for prehospital blood transfusion after 
injury vary considerably and rely on arbitrary vital sign 
thresholds and obvious symptoms of hemorrhagic shock 
[6].

Prior work shows that elevated serum lactate levels in 
trauma patients may indicate sepsis and multiorgan dys-
function, increasing the chance of mortality [7, 8]. Pre-
hospital clinicians can measure serum lactate levels using 
rapid, relatively inexpensive point of care tests to guide 
current triage decisions in the case of serious injury. In 
our previous work, we found that increased prehospital 
lactate levels were associated with higher odds of 24-h 
hospital transfusion, even among patients without hypo-
tension [5]. Prehospital lactate may be a useful prompt 
for prehospital transfusion. To mitigate significant physi-
ologic derangement, prehospital professionals need a 
reliable but simple approach to rapidly and accurately 
identify patients who are most likely to benefit from pre-
hospital blood. Our objective was to develop a parsimo-
nious clinically relevant algorithm to identify patients 
requiring early hospital transfusion using data available 
in the prehospital setting. This algorithm may be a guide 
for prehospital blood product administration.

We hypothesized that using state of the art statistical 
techniques to control for known confounders, we would 
identify a subset of factors highly predictive of transfu-
sion need after injury, thereby creating a simple in-field 
operational model for identifying patients who need 
blood during trauma resuscitation. We aimed to com-
pare the accuracy of data-driven methods with conven-
tional triage criteria thresholds to determine variables 
with the optimal sensitivity and specificity for identifying 
trauma patients who require a blood transfusion. We also 
aimed to develop proof of concept decision models with 

components that could be adapted to different prehospi-
tal services such as rural versus urban settings.

Methods
We performed a retrospective analysis of prehospital fac-
tors that predict the need for emergent blood administra-
tion (within 4 h) in adult (age > 16 years) trauma patients. 
The hours were calculated as number of minutes between 
ED arrival and discharge dates divided by 60. These dates 
are electronic timestamps. We included trauma patients 
with recorded venous lactate who were transported by 
a regional critical care transport service between 2012 
and 2019. We excluded subjects with isolated traumatic 
brain injury (TBI) (18.6%), those that died in the emer-
gency department (0.4%), and those with missing data 
(< 4%). Isolated TBI was defined as head abbreviated 
injury scale (AIS) and no other severe injuries (AIS face, 
neck, chest, spine, arms, abdomen, legs, external < = 2) 
as these patients are not likely to require transfusion. The 
University Human Research Protections Office approved 
this study.

The data was from a regional critical care transport ser-
vice that has 18 helicopter and 2 ground bases across four 
states. Blood is available at all bases; 2 units of PRBCs 
is taken by helicopters on all missions. Crews complete 
13,000 missions annually and include a minimum of a 
critical care nurse and paramedic. They are trained to 
perform point of care testing for blood gases and lactate 
concentration (iSTAT One, CG4 + , Abbott Laboratories 
Princeton, NJ). They use these data to inform resuscita-
tion and titrate mechanical ventilation.

To build an operational in-field model to identify the 
need for blood use, we used an ensemble of methodo-
logic approaches. Our first approach was to construct 
Fast and Frugal Trees (FFTs) using prehospital factors 
associated with hospital blood administration, previously 
identified using logistic regression as influencing hospi-
tal blood decisions (Table 1) [5]. Factors associated with 
hospital blood administration were used to find data-
driven thresholds. The algorithm that builds FFTs com-
pares FFT receiver operating characteristics to those of 
other common model-building approaches: CART, logis-
tic regression, Random Forest (RF) and Support Vector 
Machine (SVM) methods (see Appendix) [9].

We implemented FFT and Bayesian approaches as 
independent yet complimentary methods that validate 
each other’s findings. A heuristic (rule of thumb) FFT 
approach minimizes variance but is more prone to bias 
[9], whereas a Bayesian approach is less biased and more 
prone to higher variance [10]. Using both FFT and Bayes-
ian approaches minimize the overall error from both bias 
and variance.
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FFTs are decision trees that differ from conventional 
decision trees in three ways: 1) they contain a minimal 
number of variables/cues needed to decide, 2) they make 
a decision after every node, and 3) they can only have 
two branches per node [9]. These trees are salient (we 
know how the machine arrived at the decision), robust 
against overfitting and good at identifying new cases of 
the outcome variable. This makes FFTs ideal to guide 
fast decisions in dynamic and dangerous environments 
[9]. We split the analysis data set 50/50 into training and 
testing datasets (a common starting point for evaluating 
machine learning algorithms) [11] and applied the FTT 

algorithm. For more information about the FFT algo-
rithm, please see the Appendix/Supplemental Methods 
section.

Our second approach was a Bayesian analysis of factors 
predicting in-hospital transfusion to confirm or supple-
ment our prior approaches. Our goal was to identify a 
parsimonious model to predict transfusion within 4 h of 
hospital admission. A Bayesian approach was employed 
for several reasons. First, prior information from our 
group and others may be used to provide updated knowl-
edge about variables most strongly associated with 
the probability that a trauma patient requires a blood 

Table 1 Cohort characteristics

a n (%) shown for categorical variables, median (IQR) shown for continuous variables
b Within 24 h of hospital admission

 c The rest of population was transported from scene
d The rest of population had blunt injuries
♦ Means for categorical variables were compared using Fisher’s exact test, for continuous variables – using Mann–Whitney U test

Variable All Subjects (n = 2,157) 4 h hospital ED blood products

Yes (n = 207; 10%) No (n = 1,950; 90%) P 
 value♦

Prehospital venous lactate (mmol/L) 2.71 (1.40 – 3.15) 4.85 (2.30 – 5.80) 2.48 (1.30 – 2.98)  < 0.01

Age (years) 47 (28 – 62) 49 (28– 65) 47 (29 – 62) 0.26

Sex (male) 1,480 (69) 141 (68.0) 1,339 (68.7) 0.88

CCI 0.67 (0 – 1) 0.78 (0 – 1) 0.66 (0 – 1) 0.62

ISS 11 (4–14) 20 (10 – 29) 9.55 (4 – 13)  < 0.01

Lowest SI 0.59 (0.47 – 0.68) 0.74 (0.56 – 0.89) 0.58 (0.47 – 0.67)  < 0.01

SI range 0 (‑0.08 – 0.08) ‑0.02 (‑0.15 – 0.14) 0 (‑0.07 – 0.07) 0.68

Lowest SBP 115 (100 – 132) 85 (67 – 102) 118 (103 – 133)  < 0.01

SBP < 90  mmHga 345 (16) 129 (62) 216 (11)  < 0.01

Heart rate > 120  bpma 442 (20) 79 (38) 363 (19)  < 0.01

Blood prior to EMS (ml) 37 (0 – 0) 110 (0 – 0) 29 (0–0)  < 0.01

Blood by EMS (ml) 27 (0 – 0) 173 (0 – 300) 12 (0 – 0)  < 0.01

Crystalloids prior to EMS (ml) 418 (0 – 500) 793 (100 – 1,000) 378 (0 – 500)  < 0.01

Crystalloids by EMS (ml) 201 (50 – 200) 173 (0 – 300) 165 (50 – 150)  < 0.01

Transferac 931 (43) 90 (43) 841 (43) 0.94

Penetratingad 206 (10) 31 (14) 175 (9)  < 0.01

AIS head >  2a 199 (9) 51 (25) 148 (8)  < 0.01

AIS chest >  2a 550 (26) 95 (46) 455 (23)  < 0.01

AIS spine >  2a 148 (7) 15 (7) 133 (7) 0.77

AIS abdomen >  2a 28 (1) 4 (2) 24 (1) 0.34

AIS legs >  2a 311 (14) 62 (30) 249 (13)  < 0.01

Volume of hospital blood (ml)b 497 (0–0) 3,610 (600 – 4,600) 167 (0 – 0)  < 0.01

Mortalityab 34 (2) 19 (10) 15 (1)  < 0.01

Laparotomyab 319 (15) 125 (60) 194 (10)  < 0.01

Thoracotomyab 274 (13) 81 (39) 193 (10)  < 0.01

Craniotomyab 34 (2) 13 (7) 21 (1)  < 0.01

Interventional  radiologyab 125 (6) 26 (13) 99 (5)  < 0.01

Pelvic  fixationab 9 (0.4) 4 (2) 5 (0.3)  < 0.01

Vascular  repairab 38 (2) 12 (6) 26 (1)  < 0.01
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transfusion. Second, a hazard with frequentist statistics is 
that P values and confidence intervals may be difficult to 
interpret; highly significant P values may not be clinically 
meaningful or intuitively comprehensible. Third, Bayes-
ian methods yield the probability of a specific outcome 
given the data [10].

Finally, we synthesized the results of our approaches 
to create a proposed clinical algorithm of indications for 
prehospital blood transfusion.

This work adheres to STROBE guidelines of reporting 
in observational studies (Appendix Table 1). Data analy-
sis was performed using R® version 4.1.2 (Vienna, Aus-
tria), SAS® version 9.4 (Carry, NC), and Stata® version 17 
(College Station, TX).

Results
Of the patients transported over the seven-year study 
period, we identified 2,157 trauma patients with a pre-
hospital lactate value (Fig.  1) obtained according to the 
Blood Administration protocol (Supplemental Table  1 
and Appendix 2).

Among the cohort, 1,480 (68.6%) patients were male, 
mean age was 47 (IQR = 28 – 62), and 207 (9.60%) 
patients had the primary outcome of requiring a blood 
transfusion within 4  h of admission to the Emergency 
Department (Table 1).

The median prehospital lactate concentration was 
4.85 mmol/L for the subjects who received blood prod-
ucts (IQR = 2.30–5.80), and 2.48 mmol/L for the subjects 
who did not require hospital blood products within 4 h of 
arrival (IQR = 1.30 – 2.98). Of the subjects who received 

hospital blood products, 19 (10%) died within 24  h of 
admission. Only 1% of the subjects who did not require 
hospital blood died within 24  h of admission (n = 15). 
Consistently, a greater percentage of subjects who 
received hospital blood products needed other hospital 
life-saving interventions (LSIs) (Table 1).

We excluded information about prehospital blood and 
crystalloids given by the prehospital care service and 
prior to arrival from the decision process because of sig-
nificant collinearity (i.e., relationship between model pre-
dictors) related to in-hospital blood administration. We 
provided the FFT algorithm with 13 variables to choose 
from based on clinical value and availability to the pre-
hospital clinicians [12]. Among them were AIS scores 
provided as a surrogate for injury condition that is vis-
ible to prehospital clinician, which we also previously 
found to associate with hospital transfusion. While we 
acknowledge the AIS value would not be available in 
the prehospital setting, we use them here as a proxy for 
clinically recognizable anatomic injury patterns that are 
used in the field by EMS clinicians for trauma triage pur-
poses. Five of the thirteen variables were not selected by 
the algorithm as they were not associated with need for 
blood transfusion: 1) critical high heart > 120  bpm, 2) 
AIS abdomen > 2, 3) AIS spine > 2, 4) injury type (blunt 
or penetrating), and 5) shock index (SI) range (i.e., differ-
ence between highest and lowest SI).

The algorithm generated four variables highly asso-
ciated with hospital blood transfusions within 4  h of 
arrival (Fig.  2). The variables chosen by the algorithm 
were evaluated in the following sequence: 1) minimum 

Fig. 1 Flow diagram illustrating cohort selection. STROBE guidelines are shown in grey rectangles. Subjects with trauma were received in a trauma 
or burn unit and/or had the following mechanisms of injury: assault, animal bite, burn, electrocution (non‑lightning), gunshot wound, stabbing/
cutting, machinery accident; pedestrian, bicycle, motor vehicle, all‑terrain vehicle, motorcycle, water transport, or aircraft accident, crash or collision
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SBP (continuous), 2) prehospital venous lactate (continu-
ous), 3) minimal SI (continuous), and 4) AIS chest > 2 
(categorical). The predictors that were not selected by 
the FFT algorithm were 1) age, 2) mission type (scene or 
interfacility transfer), 3) AIS head > 2, and 4) AIS lower 
extremities > 2. The sensitivity for this FFT was 0.81 and 
specificity 0.71 based on data-driven variable sequence 
and thresholds.

We applied the FFT definitions from the pilot experi-
ment with rounded thresholds to the entire study pop-
ulation and got similar performance (Supplemental 
Figure  1A, sensitivity = 0.84, specificity = 0.70). Next, 
we maximized the sensitivity parameter with an aim to 
administer hospital blood to the greatest number of eligi-
ble patients while minimizing erroneous administrations. 

Setting the weighting parameter to any value in 0.7–1 
range resulted in a “positive-rake” FFT that made posi-
tive blood decisions after every node (Supplemental Fig-
ure  1B, sensitivity = 0.93, specificity = 0.39). Also, from 
Supplemental Figure 1B, we can see that the Positive Pre-
dictive Value (PPV) for our model is 14.0% (192 / 1,373), 
while the Negative Predictive Value is 98.1% (769 / 784), 
confirming that our model rarely mis-identifies a patient 
needing 4-h hospital transfusion.

The resulting FFT out-performed other model-build-
ing approaches (e.g., CART and logistic regression (LR)) 
by creating a decision support model for early hospital 
blood administration with higher sensitivity and specific-
ity (Supplemental Figure 1B). Finally, we altered the tree 
definitions with conventional thresholds used in current 

Fig. 2 Pilot FFT chosen by the algorithm. The top panels show the number of observations and outcome (4‑h hospital blood administration). SBP_
min – minimal SBP (mmHg), nlacven – prehospital lactate concentration (mmol/L), si_min – minimum SI (bpm/mmHg), ais_ab – AIS for abdomen 
(0/1, equal to 1 if the AIS is greater than 2). “Hits” (green triangles) refer to correct blood administrations; “misses” (red triangles) – to incorrect 
rejections. Sensitivity (triangles) = Hits / (Hits + Misses). Correct rejections (green circles) refer to correct decisions to not give blood, false alarms (red 
circles) – to false positives, or incorrect decisions to give blood. Specificity (circles) = Correct Rejections / (Correct Rejections + False Alarms). A pilot 
FFT was obtained using training and testing datasets (the testing dataset N = 1,121) and selected from a “fan” of possible trees as having the best 
balance between sensitivity and specificity. A default sensitivity weight of 0.5 resulted in a “zig‑zag” shape with alternating decisions. The ROC panel 
shows a comparison of parameters for the resulting FFT and other common model‑building approaches: CART (C, red), Logistic Regression (LR, 
blue), Random Forest (RF, purple) and Support Vector Machine (SVM, yellow)
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field triage guidelines and the literature to simplify for 
potential use in the prehospital environment [13].

The FFT algorithm found variable thresholds that were 
different from conventional ones (Fig.  2). We explored 
thresholds already in common use (i.e., SBP threshold 
of 90  mmHg and prehospital lactate of 4  mmol/L) or 
based on ease of calculation for the prehospital provider 
(SI > 1 = HR > BP) [14]. Applying conventional thresh-
olds (Supplemental Figure  1C) instead data-driven ones 
(Supplemental Figure  1B) to the dataset greatly reduces 
the sensitivity but increases the specificity parameter. 
We tested (a) how altering the FFT definition with con-
ventional thresholds would influence the sensitivity and 
specificity parameters (Supplemental Figure 1C, Table 2, 
first blue row) and (b) if a balance between specificity 
and sensitivity can be reached by using a combination of 
conventional and newly found thresholds (Table 2, yellow 
rows). The trees were created the same way as in Sup-
plemental Figure 1B (Table 2, first row) differing only by 
the threshold values (thresholds and parameters of FFT 
from Supplemental Figure  1B are highlighted orange in 
Table 2). Table 2 illustrates how varying the threshold for 
SBP, lactate, and shock index alters the sensitivity, speci-
ficity, and overall performance based on Youden’s J index. 
As expected, using a higher SBP, lower lactate, or lower SI 
threshold increases sensitivity but decreases specificity.

We performed sensitivity analyses by removing the 
lactate term from the models and using FFT-derived vs. 
conventional thresholds for SBP and SI (Table  2, rows 
2.1–2.4), recognizing that prehospital lactate may not be 
widely available. The sensitivity was often higher for the 
models containing the lactate term (compare rows 2.1 
and 1.1/3, 2.2 and 1.2/4, 2.3 and 1.5/7, 2.4 and 1.6/8), but 
the specificity and Youden’s J index were lower.

We also assessed current practice of prehospital 
blood transfusion by the critical care service and the 
need for early in-hospital transfusion. Table 3 shows a 
cross-tabulation of actual prehospital blood adminis-
tration by early hospital transfusions. Of 207 subjects 
who required early hospital transfusions, 79 (38.2%) 
subjects also received blood before arriving to the hos-
pital (Table  3, upper left quadrant). The majority (73) 
of these 79 subjects had SBP < 90  mmHg and received 
prehospital blood according to the prehospital care 

Table 2 Effect of using deduced, conventional, or mixed thresholds on FFT parameters. #‑ indicates the FFT model number; models 
with number ‘2.1’ or higher did not include lactate as a variable; Sens. – sensitivity, Spec. – specificity. Youden’s J statistic = sensitivity + 
specificity – 1 summarizes the performance of each model

Tree from row 1.1 is depicted in Supplemental Figure 1B

Tree from row 1.8 is depicted in Supplemental Figure 1C

Table 3 Cross‑tabulation of prehospital transfusions by 24‑h 
hospital transfusions

4 h hospital ED 
blood = YES

4 h 
hospital ED 
blood = NO

Prehospital blood = YES 79 (3.66%) 60 (2.78%)

Prehospital blood = NO 128 (5.93%) 1,890 (87.6%)
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service protocol for blood transfusions. Among 60 
patients who received prehospital transfusions but 
did not require hospital blood (Table  3, upper right 
quadrant), 33 (55.0%) patients had SBP < 90  mmHg. 
Patients who received blood with systolic blood pres-
sures > 90  mmHg, either received the product on the 
order of the physician or in deviation from the protocol.

In our Bayesian analysis, the most predictive model 
demonstrated statistically significant associations with 
tachycardia (OR = 1.74; 95% CI 1.12 – 2.55), elevated 
prehospital lactate (OR = 2.31; 95% CI 1.55 – 3.37), 
and hypotension (OR = 11.59; 95% CI 7.70–16.98) for 
early in-hospital transfusion. In the Bayesian subgroup 
analysis of patients with SBP > 90  mmHg (N = 1,901; 
87.6%), the most predictive model included minimum 
shock index (OR = 25.6; 95% CI 2.54 – 113.2), elevated 
lactate (OR = 2.17; 95% CI 1.11 – 3.77), and tachycar-
dia (OR = 1.59; 95% CI 0.72 – 2.94). Based on the 95% 
credible intervals, in the hypotensive cohort lactate and 
minimum shock index were significantly associated 
with a higher posterior probability of early in-hospital 
transfusion.

Synthesizing and operationalizing the results from 
our approaches for potential field use, we developed 
an algorithm for prehospital blood transfusion that 
incorporates prehospital SBP, prehospital lactate, shock 
index, and severe abdominal injuries (Fig. 3). This algo-
rithm allows for different threshold values that may 

be tailored according to system resources and time 
considerations.

We also applied the FFT definitions from Supplemental 
Figure  1B but excluding the node for severe chest inju-
ries (Supplemental Figure 2). The resulting sensitivity and 
specificity parameters were slightly lower than those of 
the four-factor model (Supplemental Figure  1B, Supple-
mental Figure 2).

Discussion
Using advanced statistical methods to control for con-
founders and to maximize the information provided by a 
large cohort of adult trauma patients with granular pre-
hospital data, we identified four variables that predict 
early in-hospital transfusions. These variables, which 
are accessible to prehospital clinicians, were selected by 
an FFT algorithm to facilitate the decision to administer 
prehospital blood quickly with a parsimonious (small) 
set of data. We confirmed these findings using Bayesian 
analysis to identify strong predictors of early in-hospi-
tal transfusion. Prehospital lactate emerged as a strong 
predictor for transfusion need from both the FFT and 
Bayesian approaches among patients who were not hypo-
tensive. This is consistent with recent study by Griggs et 
al. who also predicted in hospital transfusion using pre-
hospital lactate concentration [15].

Administration of prehospital blood products to 
patients in hemorrhagic shock reduces mortality [4]. A 

Fig. 3 Summary of obtained decision rules and how they may guide prehospital transfusions. The rules were obtained based on the need 
for 4‑hour in‑hospital transfusions
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systematic review and meta-analysis by Rijnhout et  al. 
describes the administration of prehospital blood prod-
ucts as feasible and safe, but describes the evidence as 
low-quality and difficult to compare because there is 
no standard indication for transfusion [16]. While tools 
have been developed to identify patient at risk of Trauma 
Associated Severe Hemorrhage (TASH) and for massive 
transfusion (ABC score), they rely on data not readily 
available in the prehospital environment (hemoglobin 
and ultrasound) and neither was developed for the pre-
hospital environment [17, 18].

To find the simplest decision model to identify people 
who need prehospital blood transfusions, we are faced 
with two competing considerations: 1) correctly iden-
tifying the greatest number of people who need blood 
(i.e., maximizing the sensitivity of the model), and 2) 
conserving limited resources of blood. Using these con-
siderations, an EMS Medical Director may conclude 
that the model with a lactate concentration threshold of 
2.5 mmol/L (Sensitivity = 0.89, Specificity = 0.48, Table 2 
row 1.6) is more appropriate for use in a rural setting with 
delayed access to a trauma center and subsequent dam-
age control resuscitation, while a model with a 4 mmol/L 
threshold (Sensitivity = 0.82, Specificity = 0.62, Table  2 
row 1.8) could be more suitable for urban settings with 
short prehospital times. Similar trade-offs can be made 
with the thresholds for SBP and shock index.

We adjusted the model thresholds to create simple 
rules for quick reference in the field (Table 2). The results 
depicted in Table 2 have broad implications for prehospi-
tal clinicians, ranging from urban and rural EMS systems 
to austere military environments that might require pro-
longed field care. Using the four variables derived from 
our models, prehospital system leadership can decide 
what thresholds are appropriate for transfusions in their 
respective systems, based on existing resources and 
trauma center access.

Previous studies associate prehospital lactate with mor-
tality and morbidity in trauma patients [19, 20]. Subse-
quent work demonstrated the association between lactate 
and need for life saving interventions [21]. Recent work by 
Fukuma et al. and Galvagno et al. established that prehos-
pital lactate threshold of > 4 mmol/L is associated with the 
need for life-saving interventions for hemorrhage control 
[14, 22]. This threshold is more conservative than the one 
found by the FFT algorithm (2.5 mmol/L).

The last cue identified to trigger potential transfusion 
is severe chest injury. In the data we used AIS > 2; how-
ever, recognizing this is not available in the field setting 
as an objective number, this cue would rely on clinical 
exam evidence, much like the anatomic triage criteria 
for the national field triage guidelines are identified. We 

suggest operationalizing this cue as flail chest, unsta-
ble chest fractures, or need for needle decompression 
(Fig.  3). Local medical directors certainly would have 
discretion to operationalize this cue in an alternative way 
given the personnel, resources, and trauma population 
seen by his or her EMS agency. We do show comparable 
accuracy if the cue is omitted (Supplementary Figure 2), 
allowing further adaptation to local circumstances given 
it is the most subjective cue in operational form.

A key limitation of our study is that decision to trans-
fuse blood is not always synonymous with the need 
to transfuse blood. Also, our analyses are retrospec-
tive and derived from a single EMS agency serving a 
regional trauma system. The dataset was limited to 
patients who had lactate sampled, which imparts bias 
among patients with hemorrhagic shock. Selection bias 
may result when treatment priorities preclude sampling 
of lactate in the sickest patients. EMS data is rarely 
entered into the record contemporaneously with care 
and is subject to recall and reporting bias. We import 
data electronically (vital signs, times and point of care 
testing) into the prehospital health record which miti-
gates these biases. There is likely a selection and sen-
sitivity bias, as our critical care organization is called 
for patients with more severe injuries or those who are 
geographically distant from trauma care.

Conclusion
We developed a parsimonious, clinically relevant algo-
rithm to identify patients who may require prehospital 
transfusion. This algorithm accounts for prehospital 
lactate concentration, which is useful for identifying 
patients with occult shock not meeting the conven-
tional threshold for hypotension. Thresholds of deci-
sion factors should be adjusted to meet the needs and 
resources of a given prehospital trauma system. Further 
work is necessary to externally validate this algorithm 
for prehospital blood transfusion.

We are including the Appendix describing the FFT 
algorithm, Blood Administration protocol, and the 
study checklist for adhering to STROBE guidelines as 
Supplemental Digital Content.
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